Después
de realizare el primer artículo referente al Cadillo Pata de Perro, he notado
que es una de las secciones más visitadas de mi Blog, por lo que dedique un
poco más de tiempo a realizar unas investigaciones al respecto y pude encontrar
que el año anterior (2010) fue realizado un estudio exhaustivo para determinar las
sustancias químicas presentes en el sumo de las hojas frescas del Cadillo Pata
de Perro, cuyo nombre científico es Ureña Sinuata L, y que junto a la Ureña
Lobata L conforman el género Ureña L (Malvaceae).
www.saber.ula.ve/avancesenquimica
Avances
en Química, 5(2), 95-98 (2010)
Artículo
científico
Flavonoids
from Urena sinuata L.
Adakarleny
Sosa & Carmelo Rosquete*
Laboratorio
de Productos Naturales, Departamento de Química, Facultad de Ciencias.
Universidad
de los Andes, Mérida 5101, Venezuela
(*) carmelor@ula.ve
Recibido:
12/02/2010 Revisado: 28/06/2010 Aceptado: 07/07/2010
Resumen
En este
manuscrito se reportan los resultados obtenidos del estudio fitoquímico de las
hojas frescas de Urena sinuata L. (cadillo de perro). Los componentes mayoritarios
identificados fueron los flavonoides: 3'-β-Dglucopiranosil-6,7-O-dimetilquercetagetina
(I), 4'-β-D-glucopiranosil-6,7Odimetilquercetagetina
(II) y 3-β-Dglucopiranosil-6,7-O-dimetil-quercetagetina
(III). Los compuestos aislados fueron caracterizados mediante sus constantes
físicas y el análisis de sus espectros ultravioleta, de masas y de resonancia
magnética nuclear mono- y bi-dimensionales. También se muestran los
resultados obtenidos para estos compuestos en el ensayo de citotoxicidad
sobre Artemia salina.
Palabras
claves: Urena sinuata; flavonoides; glicósidos de
flavonoles; derivados de quercetagetina
Abstract
In this work it is exposed the obtained results of the
phytochemical study of the fresh leaves of Urena sinuata L.(dog wart).
The major components are the flavonoids: quercetagetin-6,7-O-dimethylether-3'-β-D-gluco-pyranoside (I), quercetagetin-6,7-O-dimethylether-4'-β-D-glucopyranoside (II), and quercetagetin-6,7-O-dimethylether-3-β-D-glucopyranoside (III). These products were characterized
through their physical constants, UV, MS, and oneand two-dimensional NMR
studies. By other hand, the obtained results of the Artemia salina cytotoxicity
bioassay carried out to the isolated products are exposed.
Keywords: Urena sinuata; Flavonoids;
Flavonol glycosides; Quercetagetin derivatives
Introduction
Urena L.
(Malvaceae) is a genus composed by two species:Urena lobata L. and Urena
sinuata L. although some Botanist suggest that U. sinuata is
subspecie of U. lobata. This plant (U. lobata) has
been phytochemically studied by some authors, and steroids
(stigmasterol and βsitosterol) 1, xanthones (mangiferin) 2, flavonoids (quercetina2-4, kaempferol, hypolaetin, gossypetin, luteolin,
apigenin and chrysoeriol3), sugars
(glucose, mannose, xylose and fructose) 5, and vitamins (ascorbic acid) 5 has been reported.
For U. sinuata only has been reported
fatty acids: sterculic and malvalic acids6.
In Venezuela,
the infusion of foliage from Urena sinuata L.is used as
anti-inflammatory, analgesic, and against kidneypain and gall stone7. For U.lobata antiparasitic8,9, antibacterial10-12, antidiarrheal13, and immunomodulatory
activity 14 have been
mentioned.
Introducción
Ureña L. (Malvaceae) es un género
compuesto por dos especies: Urena lobata L. y L. Ureña sinuata aunque algunos
botánicos sugieren que la U. sinuata es una subespecie de U. lobata. Esta
planta (U. lobata) ha sido estudiada fitoquímicamente por algunos autores que
han reportado los esteroides (estigmasterol y βsitosterol) 1, xantonas
(mangiferina) 2, flavonoides
(quercetina2-4, kaempferol, hypolaetin,
gossypetin, luteolina, apigenina y chrysoeriol3), azúcares
(glucosa, xilosa manosa, y fructosa) 5, y vitaminas
(ácido ascórbico) 5
Para U. sinuata sólo se ha
reportado ácidos grasos: acids6 estercúlico y malvalic.
En Venezuela, la infusión de las
hojas de Ureña sinuata L.es utilizada como anti-inflamatorio, analgésico, y
contra el dolor de riñón y de la vesícula calculos7. Para
antiparasitario U.lobata 8,9, antibacterial10-12, antidiarreico13, y se han
mencionado actividad de inmunomoduladora 14
.
Experimental
General Experimental Procedures
IR spectra were recorded as KBr disc on a Perkin
ElmerFT-IR Spectrometer 1725X. UV spectra were recorded on an UV Varian Scan 3
using methanol as solvent. NMR spectra were run on Bruker Avance DRX 400 using CDCl3
as solvent and TMS as internal standard. Mass spectra were
recorded on a Hewlett-Packard Mass Spectrometer model 5930a (70 eV). Si gel 60
(Merck, 70-230 mesh) with dry assembly was used in CC and Si gel Merck HF 254
(10 – 40 μ) on glass sheet (0.25 and 0.5 mm thickness, respectively) was used as
adsorbent for TLC and PTLC.
Experimental
Procedimientos Experimentales Generales
Los espectros IR
se registraron como disco de KBr en un espectrómetro Perkin-IR 1725X ElmerFT.
Espectros UV se registraron en un UV Varian scanner 3 utilizando metanol como
disolvente. Los espectros de RMN se realizaron en Bruker Avance DRX 400 con
CDCl3
como disolvente
y TMS como patrón interno. Los espectros de masas se registraron en un
Hewlett-Packard modelo 5930a espectrómetro de masa (70 eV). Si gel 60 (Merck,
malla 70-230) con montaje en seco se utilizó en CC y Si gel de Merck IC 254
(10 - 40 μ) en la hoja de vidrio (0,25 y 0,5 mm de espesor,
respectivamente) fue utilizado como adsorbente para TLC y PTLC.
Plant Material
Urena sinuata L. (Malvaceae) was collected at SanCristóbal suburbs (Táchira
State-Venezuela). Voucherspecimens
were stored at MERC Herbarium, SciencesFaculty, Universidad de los
Andes-Venezuela.
Material Vegetal
Ureña sinuata L.
(Malvaceae) fue colectada en los suburbios San Cristóbal (Estado
Táchira-Venezuela).Varios especímenes se almacenaron a MERC Herbario, Facultad
de Ciencias, Universidad de los Andes-Venezuela.
Extraction and Isolation
1 Kg of fresh plant was extracted in a Soxhlet with nhexane,
dichloromethane, acetone and methanol successively. Hexane extract was
percolated on Sephadex LH-20® column for eliminate chlorophylls and analyzed
by GC/MS. None additional to previously reported interesting compounds was detected6. Dichloromethane extract (10.0 g) afforded before Si
gel CC hexadecyl 4-monoitaconate (500 mg) as mainly product. Acetone extract
(8.9 g) was also percolated on Sephadex LH-20® column for eliminate
chlorophylls using firstly a mixture of n-hexane/chloroform/methanol
(1:1:1) and then methanol, as solvents. From methanol eluate (525 mg) were
obtained, before PTLC using n-hexane/acetone (1:8) x 8 as eluent,
quercetagetin-6,7-O-dimethylether-3'-β-Dglucopyranoside,
I (63 mg), quercetagetin-6,7-O-dimethylether-4'-β-D-glucopyrano-side,
II (72 mg), and quercetagetin- 6,7-O-dimethylether-3-β-D-glucopyranoside, III (45mg).
Extracción y aislamiento
1 Kg de planta
fresca se extrajo en un Soxhlet con nhexano, diclorometano, acetona y metanol
sucesivamente. Se filtró extracto de Hexano sobre Sephadex LH-20 ® en la
columna para eliminar clorofilas y se analizaron
por GC / MS. Se
detectó compuestos interesantes6 ninguno
adicional a informes anteriores. Extracto de diclorometano (10,0 g) proporcionó
antes de Si gel de CC hexadecilo 4-monoitaconate (500 mg) como principal
producto. Extracto de acetona (8,9 g) se percola también sobre Sephadex LH-20 ®
en la columna para eliminar clorofilas utilizando en primer lugar una mezcla de
n-hexano/chloroformo/methanol (1:1:1) y luego metanol, como disolventes. De
eluato metanol (525 mg) se obtuvieron, antes PTLC utilizando n-hexano/acetona
(1:8) como eluyente x 8, quercetagetin-6
,7-O-dimetil-éter-3 '-β-Dglucopyranoside, I
(63 mg), quercetagetin-6 ,7-O-dimetil-éter-4' -β-D-glucopyrano-lado, II (72 mg), y
quercetagetin-6,7-O-dimetil-éter-3-β-D-glucopiranósido, III (45 mg).
Biological Essay
Artemia salina cytotoxicity test was performed following the procedure described by Meyer
et al.16
Ensayo biológico
Artemia salina
la prueba de citotoxicidad se realizó siguiendo el procedimiento descrito por
Meyer et al16
Quercetagetin-6,7-O-dimethylether-3'-β-D-glucopyranoside,
I: dark yellow prisms, mp > 300 ºC. IR (KBr) υmax: 3377, 2923, 1654, 1554, 1130, 812 cm-1. UV (MeOH): see Table 2. 1H- and 13C-NMR (CDCl3): see table 1. MS m/z: [M]+. 508 (<
1), [M – Glu + H]+. 346 (100), [M – Glu –
H2O + H]+. 328
(31), [M – Glu – H2C=C=O + H]+. 303 (66), [M – Glu – H2C=C=O – H2O + H]+.
285 (16), [M – Glu – H2C=C=O – H2O – CH3 + H]+ 260 (9), [A1 – OCH3 – CO]+
137 (19).
Quercetagetin-6,7-O-dimethylether-4'-β-D-glucopyranoside,
II: dark yellow prisms, mp > 300 ºC. IR (KBr) υmax: 3378, 2929, 1654, 1547, 1131, 811 cm-1. UV (MeOH): see Table 2. 1H- and 13C-NMR (CDCl3): see
table 1. MS
m/z: [M]+. 508 (< 1), [M – Glu + H]+. 346 (100), [M –
Glu –
H2O + H]+. 328
(34), [M – Glu – H2C=C=O + H]+. 303 (70), [M – Glu – H2C=C=O – H2O + H]+.
285 (18), [M – Glu – H2C=C=O – H2O – CH3 + H]+ 260 (9), [A1 – OCH3 – CO]+
137 (19).
Quercetagetin-6,7-O-dimethylether-3-β-D-glucopyranoside,
III: pale yellow prisms, mp > 300 ºC. IR (KBr) υmax: 3413, 2945, 1658, 1556, 1134, 806 cm-1. UV (MeOH): see Table 2. 1H- and 13C-NMR (CDCl3): see
table 1. MS
m/z: [M]+. 508 (< 1), [M – Glu + H]+. 346 (100), [M –
Glu – H2O
+ H]+. 328
(31), [M – Glu – H2C=C=O + H]+. 303 (68), [M – Glu – H2C=C=O – H2O + H]+.
285 (16), [M – Glu – H2C=C=O – H2O – CH3 + H]+ 260 (9), [A1 – OCH3 – CO]+
137 (19).
Results and Discussion
All compounds, I to III, showed very
similar IR, mass and 13C-NMR spectra and only slight differences at 1H-NMR
spectra (see table 1). The whole analysis of 1D spectroscopic data allowed us
to determine that I to III correspond to flavone-type compounds, O-substituted
at 3, 5, 6, 7, 3', and 4' positions, with one β-D-glucopyranosyl
(mainly identified by 13C-NMR chemical shift), twomethoxyl, and three hydroxyl groups as substituents.
HMBC experiments confirmed us that methoxyl groups were placed at 6 and 7 positions
for all three compounds, remain therefore to insert t he β-D-glucopyranosyl group between 3, 5, 3' and 4' positions, which was
made using
shift reagent for UV spectra.
During UV spectra analysis of the compounds (see table
2) were observed: For compound I, the bathochromic shift for band I (+
42 nm) showing a low intensity decrease with in time (hypochromic effect)
observed when UV spectrum was recorded in methanol + sodium methoxyde can let
us to place hydroxyl group on positions 3 and 4'. When UV spectrum was recorded
in methanol + AlCl3, a + 53 nm bathochromic shift was observed; that shift
remain unchanged after hydrochloric acid addition, which place hydroxyl group
on positions 3 and 5. In consequence, the β-D-glucopyranosyl
moiety should be located on 3' carbon, and compound I should be
quercetagetin-6,7-Odimethylether-3'-β-D-glucopyranoside.
Similar to I, compound II showed for
band I, abathochromic shift (+ 54 nm) in presence of AlCl3 and AlCl3 + HCl,
which place hydroxyl groups on positions 3 and 5 too. The bathochromic
displacement (+ 42 nm) of band I observed after sodium methoxyde addition
without in time intensity decrease, together with the existence of C3 hydroxyl
group previously established, place in this case, the β-D-glucopyranosyl moiety on C4', and compound II
should be quercetagetin-6,7-O-dimethylether-4'-β-Dglucopyranoside.
Different to previously described compounds, band I of
UV spectrum in methanol + AlCl3 of compound III was affected after HCl
addition, underwent a hypsochromic shift of -37 nm (respect to methanol +
AlCl3) which indicated the existence of an orto-dihydroxyl moiety on
Bring
(3' and 4' positions), which was corroborated by band
I hypsochromic displacement (-32 nm) observed on methanol + sodium acetate UV
spectrum after boric acid addition. The stability in time of the methanol +
sodium methoxyde, together with the 12 nm bathochromic shift remanent respect
to methanol UV spectrum observed on band I of methanol + AlCl3 + HCl, place the
third hydroxyl group on C5 carbon, and therefore compound III should
be quercetagetin-6,7-O-dimethylether-3-β-D-glucopyranoside. Although this compound has been reported from Brickellia
dentata15, none spectroscopic data has been published in reference
15 and references cited therein.
The
UV β-D-glucopyranosyl moieties locations for I-III were
confirmed by HMBC interactions observed between the hydrogen on anomeric carbon
from each saccharide moiety and it flavonoid moiety carbon (3’, 4’, and 3, for I,
II, and III respectively)
Table 1: NMR data for compounds I –
III.
_______________________________________________________________________________________
I
II
III_______________
δC δH, m (J Hz) δC δH, m (J Hz) δC δH, m (J Hz)
2 156.9 156.8 156.6
3 133.5 133.5 133.3
4 177.8 177.9
177.7
5 151.9 151.9
151.7
6 131.9 131.8 131.6
7 158.8 158.8
158.3
8 91.4 6.85, s 91.3
6.82, s 91.2 6.83, s
9 151.9 151.8 151.6
10 105.5 105.5 105.3
1' 121.3 121.3
121.1
2' 116.5 7.62, d (2.0) 116.5 7.60, d (2.0) 116.3 7.61, d (2.0)
3' 144.9 150.0 144.8
4' 148.7 148.8 148.5
5' 115.4 6.84, d (8.0) 115.4 6.83, d (8.0) 115.1 6.84, d (8.0)
6' 121.8 7.61, dd (8.0, 2.0) 121.8 7.57, dd (8.0, 2.0) 121.6 7.58, dd (8.0, 2.0)
1'' 100.9 5.46, d (7.3) 100.9 5.44, d (7.3) 100.7 5.48, d (7.3)
2'' 76.6 3.23, dd (8.0, 7.3) 76.6 3.24, dd (8.0, 7.3) 76.5 3.19, dd (8.0, 7.3)
3'' 70.1 3.26, dd (8.0, 8.0) 70.0
3.25, dd (8.0, 8.0) 69.9 3.27, dd (8.0, 8.0)
4'' 74.3 3.08,
dd (8.0, 8.0) 74.2 3.08, dd (8.0, 8.0) 74.1 3.08, dd (8.0, 8.0)
5'' 77.6
3.08, ddd (8.0, 5.5, 1.5) 77.6 3.07, ddd (8.0, 5.5, 1.5) 77.5 3.07, ddd (8.0, 5.5, 1.5)
6''a 61.1 3.37, dd (11.5, 1.5) 61.1 3.34, dd (11.5, 1.5) 61.8 3.55, dd (11.5, 1.5)
6''b 61.1 3.30, dd (11.5, 5.5) 61.1 3.31, dd (11.5, 5.5) 61.8 3.29, dd (11.5, 5.5)
6-OMe 60.3 3.71, s 60.3 3.73, s 60.3 3.71, s
7-OMe 56.6 3.90, s 56.6 3.97, s 56.5 3.90, s
5-OH 12.58, s 12.55, s 12.60, s
Table 2: UV data for compounds I –
III.
___________________________UV λmax (nm)_______________________________
___________I_______________________ II ____________________III___________
Band
I Band II Band I Band II Band I Band II
MeOH 352 256 352 259 353 258
MeOH+NaOMe 394↓
272↓ 405 270 393 270
MeOH+NaOAc 404 258 376 266 407 256
NaOAc+H3BO3 404 258 376 266 375 258
MeOH+AlCl3 405 271 406 276 402 273
MeOH+AlCl3+HCl 408 272 406 274 365
266
↓
Intensities decrease in time.
Due to the frequently ingestion of U. sinuata leaves infusion by
Andean peoples and, by other hand, by the possibility of use of the three
flavonoids in
pharmacological essays, the cytotoxicity of these compounds was tested.
Compounds I to III showed similar values for DL50≈ 1000 ppm,
which point out the low cytotoxicity showed for
the three compounds to Artemia salina16.
Hexadecyl 4-monoitaconate isolated from dichloromethane extract probably
arises from fungus of the Aspergillus genus which colonized the plant
material
during the storage.
Conclusions
From Urena sinuata leaves, three quercetagetin glucosides were
isolated and identified; two of them are new natural products. The presence of I-III
in U. sinuata leaves difference chemically to this plant from U.
lobata, from the which only flavonoid aglycones were isolated; this
sentence support the location of these taxa in different species.
References
1. S Lin, T Pan, C Horg. Chemical constituents of Urena
lobata
L. var. tomentosa (Blume) Walp (Malvaceae). Hua
Hsueh,
41, 72-73
(1983).
2. K Srinivasan, S Subramanian. Isolation of
mangiferin from
Urena lobata. Arogya, 7, 140-141 (1981).
3. I Matlawska. Investigation of flavonoid compounds
of select
species from Malvaceae family. Herba Polonica, 36,
65-69
(1990).
4. I Matlawska, M Sikorska. Flavonoid compounds in the
flowers of Urena lobata L (Malvaceae). Acta
Pol. Pharm.,
56,
69-71 (1999).
5. D Bhatt, G Rawat. Chemical analysis of medicinal
plants
Urena lobata L and Abutilon indicum L. Orient. J. Chem.,
17,
341-342 (2001).
6. M Kittur, C Mahajanshetti, G Lakshminaroyana.
Characteristics
and composition Trichosanthes bracteata, Urena
sinuata and Capparis divaricata seeds and oils. J.
Oil
Techn.,
25, 34-41 (1993).
7. Banco de Datos
TRAMIL. Investigaciones pendientes.
http://funredes.org/endacaribe/investigPendientespag11.html.
Visited on February, 9th, 2010. 8:55 h.
8. J Satalaya, J
Rojas, B Ríos, M Grandez, E Rengifo, G Ruiz,
D Gutiérrez, A
Giménez, N Flores. Antiparasitic
activity of
medicinal plants from Peruvian Amazon. BIOFARBO,
17,
23-31 (2009).
9. J Nguyen-Pouplin,
H Tran, H Tran, T Phan, C Dolecek, J
Farrar, T Tran, P
Caron, B Bodo, P Grellier. Antimalarial
and cytotoxic activities of ethnopharmacologically
selected
medicinal plants from South Vietnam. J. Ethno-pharmacol.,
109,
417-427(2007).
10.U Mazumder, M Gupta, L Manikandan, S Bhattacharya.
Antibacterial activity of Urena lobata root. Fitoterapia,
72,
927-929 (2001).
11.O Adeloye,
A Akinpelu, O Ogundaini, A Obafemi. Studies
on antimicrobial, antioxidant and phytochemical
analysis of
Urena lobata Leave extract. J. Phys. Nat. Sc., 1, 1-9
(2007).
12.R Mathappan, V Prasanth, C Jolly. M Somanath.
Comparative study on the antibacterial activity of the
methanolic extract of Urena lobata root and a
standard
marketed herbal formulation. J. Pharm. Res.,
3, 953-955
(2010).
13.A Yadav, V Tangpu. Antidiarrheal Activity of Lithocarpus
dealbata and Urena lobata. Extracts: Therapeutic
Implications. Pharm. Biol., 45, 223-229 (2007).
14.R Mathappan, V Prasanth, G Parthasarathy.
Immunomodulatory
activity of the methanolic extract of Urena
lobata
Linn. Internet J. Pharmacol., 7, (2009).
15.A Ulubelen, B Timmermann, T Mabry. Flavonoids from
Brickellia chlorolepis and B. dentata. Phytochemistry, 19,
905-908 (1980).
16.B Meyer, N Ferrigni, J Putnam, L Jacobsen, D
Nichols, J
McLaughlin. Brine Shrimp: a convenient general
bioassay
for active plant constituents. Planta Medica, 45,
31-34
(1991).
Una profusa gama de ilustraciones se puede encontrar en: https://picasaweb.google.com/118369454231235428280/CadilloPataDePerro
Pido disculpas por la
mala traducción que he podido hacer y por los errores ortográficos que haya
cometido al realizar la traducción, si alguno puede asistirme en este sentido
le estaré muy agradecido. William Piña