domingo, 26 de agosto de 2012

Cadillo Pata de Perro. II Parte.


Después de realizare el primer artículo referente al Cadillo Pata de Perro, he notado que es una de las secciones más visitadas de mi Blog, por lo que dedique un poco más de tiempo a realizar unas investigaciones al respecto y pude encontrar que el año anterior (2010) fue realizado un estudio exhaustivo para determinar las sustancias químicas presentes en el sumo de las hojas frescas del Cadillo Pata de Perro, cuyo nombre científico es Ureña Sinuata L, y que junto a la Ureña Lobata L conforman el género Ureña L (Malvaceae).


www.saber.ula.ve/avancesenquimica
Avances en Química, 5(2), 95-98 (2010)
Artículo científico
Flavonoids from Urena sinuata L.
Adakarleny Sosa & Carmelo Rosquete*
Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias.
Universidad de los Andes, Mérida 5101, Venezuela
(*) carmelor@ula.ve
Recibido: 12/02/2010 Revisado: 28/06/2010 Aceptado: 07/07/2010

                                                                           Resumen
En este manuscrito se reportan los resultados obtenidos del estudio fitoquímico de las hojas frescas de Urena sinuata L. (cadillo de perro). Los componentes mayoritarios identificados fueron los flavonoides: 3'-β-Dglucopiranosil-6,7-O-dimetilquercetagetina (I), 4'-β-D-glucopiranosil-6,7Odimetilquercetagetina (II) y 3-β-Dglucopiranosil-6,7-O-dimetil-quercetagetina (III). Los compuestos aislados fueron caracterizados mediante sus constantes físicas y el análisis de sus espectros ultravioleta, de masas y de resonancia magnética nuclear mono- y bi-dimensionales. También se muestran los resultados obtenidos para estos compuestos en el ensayo de citotoxicidad sobre Artemia salina.
Palabras claves: Urena sinuata; flavonoides; glicósidos de flavonoles; derivados de quercetagetina

                                                       Abstract 
In this work it is exposed the obtained results of the phytochemical study of the fresh leaves of Urena sinuata L.(dog wart). The major components are the flavonoids: quercetagetin-6,7-O-dimethylether-3'-β-D-gluco-pyranoside (I), quercetagetin-6,7-O-dimethylether-4'-β-D-glucopyranoside (II), and quercetagetin-6,7-O-dimethylether-3-β-D-glucopyranoside (III). These products were characterized through their physical constants, UV, MS, and oneand two-dimensional NMR studies. By other hand, the obtained results of the Artemia salina cytotoxicity bioassay carried out to the isolated products are exposed.

Keywords: Urena sinuata; Flavonoids; Flavonol glycosides; Quercetagetin derivatives

  Introduction
Urena L. (Malvaceae) is a genus composed by two species:Urena lobata L. and Urena sinuata L. although some Botanist suggest that U. sinuata is subspecie of U. lobata. This plant (U. lobata) has been phytochemically studied by some authors, and steroids (stigmasterol and βsitosterol) 1, xanthones (mangiferin) 2, flavonoids (quercetina2-4, kaempferol, hypolaetin, gossypetin, luteolin, apigenin and chrysoeriol3), sugars (glucose, mannose, xylose and fructose) 5, and vitamins (ascorbic acid) 5 has been reported.
For U. sinuata only has been reported fatty acids: sterculic and malvalic acids6.
 In Venezuela, the infusion of foliage from Urena sinuata L.is used as anti-inflammatory, analgesic, and against kidneypain and gall stone7. For U.lobata antiparasitic8,9, antibacterial10-12, antidiarrheal13, and immunomodulatory
activity 14 have been mentioned.
Introducción
Ureña L. (Malvaceae) es un género compuesto por dos especies: Urena lobata L. y L. Ureña sinuata aunque algunos botánicos sugieren que la U. sinuata es una subespecie de U. lobata. Esta planta (U. lobata) ha sido estudiada fitoquímicamente por algunos autores que han  reportado  los esteroides (estigmasterol y βsitosterol) 1, xantonas (mangiferina) 2, flavonoides (quercetina2-4, kaempferol, hypolaetin, gossypetin, luteolina, apigenina y chrysoeriol3), azúcares (glucosa, xilosa manosa, y fructosa) 5, y vitaminas (ácido ascórbico) 5 
Para U. sinuata sólo se ha reportado ácidos grasos: acids6 estercúlico y malvalic.
En Venezuela, la infusión de las hojas de Ureña sinuata L.es utilizada como anti-inflamatorio, analgésico, y contra el dolor de riñón y de la vesícula calculos7. Para antiparasitario U.lobata 8,9, antibacterial10-12, antidiarreico13, y se han mencionado actividad de inmunomoduladora 14
.
Experimental
General Experimental Procedures
IR spectra were recorded as KBr disc on a Perkin ElmerFT-IR Spectrometer 1725X. UV spectra were recorded on an UV Varian Scan 3 using methanol as solvent. NMR spectra were run on Bruker Avance DRX 400 using CDCl3
as solvent and TMS as internal standard. Mass spectra were recorded on a Hewlett-Packard Mass Spectrometer model 5930a (70 eV). Si gel 60 (Merck, 70-230 mesh) with dry assembly was used in CC and Si gel Merck HF 254
(10 – 40 μ) on glass sheet (0.25 and 0.5 mm thickness, respectively) was used as adsorbent for TLC and PTLC.
Experimental
Procedimientos Experimentales Generales
Los espectros IR se registraron como disco de KBr en un espectrómetro Perkin-IR 1725X ElmerFT. Espectros UV se registraron en un UV Varian scanner 3 utilizando metanol como disolvente. Los espectros de RMN se realizaron en Bruker Avance DRX 400 con CDCl3
como disolvente y TMS como patrón interno. Los espectros de masas se registraron en un Hewlett-Packard modelo 5930a espectrómetro de masa (70 eV). Si gel 60 (Merck, malla 70-230) con montaje en seco se utilizó en CC y Si gel de Merck IC 254
(10 - 40 μ) en la hoja de vidrio (0,25 y 0,5 mm de espesor, respectivamente) fue utilizado como adsorbente para TLC y PTLC.
Plant Material
Urena sinuata L. (Malvaceae) was collected at SanCristóbal suburbs (Táchira State-Venezuela). Voucherspecimens were stored at MERC Herbarium, SciencesFaculty, Universidad de los Andes-Venezuela.
Material Vegetal
Ureña sinuata L. (Malvaceae) fue colectada en los suburbios San Cristóbal (Estado Táchira-Venezuela).Varios especímenes se almacenaron a MERC Herbario, Facultad de Ciencias, Universidad de los Andes-Venezuela.
Extraction and Isolation
1 Kg of fresh plant was extracted in a Soxhlet with nhexane, dichloromethane, acetone and methanol successively. Hexane extract was percolated on Sephadex LH-20® column for eliminate chlorophylls and analyzed
by GC/MS. None additional to previously reported interesting compounds was detected6. Dichloromethane extract (10.0 g) afforded before Si gel CC hexadecyl 4-monoitaconate (500 mg) as mainly product. Acetone extract (8.9 g) was also percolated on Sephadex LH-20® column for eliminate chlorophylls using firstly a mixture of n-hexane/chloroform/methanol (1:1:1) and then methanol, as solvents. From methanol eluate (525 mg) were obtained, before PTLC using n-hexane/acetone (1:8) x 8 as eluent, quercetagetin-6,7-O-dimethylether-3'-β-Dglucopyranoside, I (63 mg), quercetagetin-6,7-O-dimethylether-4'-β-D-glucopyrano-side, II (72 mg), and quercetagetin- 6,7-O-dimethylether-3-β-D-glucopyranoside, III (45mg).
Extracción y aislamiento
1 Kg de planta fresca se extrajo en un Soxhlet con nhexano, diclorometano, acetona y metanol sucesivamente. Se filtró extracto de Hexano sobre Sephadex LH-20 ® en la columna para eliminar clorofilas y se analizaron
por GC / MS. Se detectó compuestos interesantesninguno adicional a informes anteriores. Extracto de diclorometano (10,0 g) proporcionó antes de Si gel de CC hexadecilo 4-monoitaconate (500 mg) como principal producto. Extracto de acetona (8,9 g) se percola también sobre Sephadex LH-20 ® en la columna para eliminar clorofilas utilizando en primer lugar una mezcla de n-hexano/chloroformo/methanol (1:1:1) y luego metanol, como disolventes. De eluato metanol (525 mg) se obtuvieron, antes PTLC utilizando n-hexano/acetona  (1:8) como eluyente x 8, quercetagetin-6 ,7-O-dimetil-éter-3 '-β-Dglucopyranoside, I (63 mg), quercetagetin-6 ,7-O-dimetil-éter-4' -β-D-glucopyrano-lado, II (72 mg), y quercetagetin-6,7-O-dimetil-éter-3-β-D-glucopiranósido, III (45 mg).

Biological Essay
Artemia salina cytotoxicity test was performed following the procedure described by Meyer et al.16
Ensayo biológico
Artemia salina la prueba de citotoxicidad se realizó siguiendo el procedimiento descrito por Meyer et al16
Quercetagetin-6,7-O-dimethylether-3'-β-D-glucopyranoside, I: dark yellow prisms, mp > 300 ºC. IR (KBr) υmax: 3377, 2923, 1654, 1554, 1130, 812 cm-1. UV (MeOH): see Table 2. 1H- and 13C-NMR (CDCl3): see table 1. MS m/z: [M]+. 508 (< 1), [M – Glu + H]+. 346 (100), [M – Glu –
H2O + H]+. 328 (31), [M – Glu – H2C=C=O + H]+. 303 (66), [M – Glu – H2C=C=O – H2O + H]+. 285 (16), [M – Glu – H2C=C=O – H2O – CH3 + H]+ 260 (9), [A1 – OCH3 – CO]+ 137 (19).

Quercetagetin-6,7-O-dimethylether-4'-β-D-glucopyranoside, II: dark yellow prisms, mp > 300 ºC. IR (KBr) υmax: 3378, 2929, 1654, 1547, 1131, 811 cm-1. UV (MeOH): see Table 2. 1H- and 13C-NMR (CDCl3): see table 1. MS m/z: [M]+. 508 (< 1), [M – Glu + H]+. 346 (100), [M – Glu –
H2O + H]+. 328 (34), [M – Glu – H2C=C=O + H]+. 303 (70), [M – Glu – H2C=C=O – H2O + H]+. 285 (18), [M – Glu – H2C=C=O – H2O – CH3 + H]+ 260 (9), [A1 – OCH3 – CO]+ 137 (19).

Quercetagetin-6,7-O-dimethylether-3-β-D-glucopyranoside, III: pale yellow prisms, mp > 300 ºC. IR (KBr) υmax: 3413, 2945, 1658, 1556, 1134, 806 cm-1. UV (MeOH): see Table 2. 1H- and 13C-NMR (CDCl3): see table 1. MS m/z: [M]+. 508 (< 1), [M – Glu + H]+. 346 (100), [M – Glu – H2O
+ H]+. 328 (31), [M – Glu – H2C=C=O + H]+. 303 (68), [M – Glu – H2C=C=O – H2O + H]+. 285 (16), [M – Glu – H2C=C=O – H2O – CH3 + H]+ 260 (9), [A1 – OCH3 – CO]+ 137 (19).

Results and Discussion
All compounds, I to III, showed very similar IR, mass and 13C-NMR spectra and only slight differences at 1H-NMR spectra (see table 1). The whole analysis of 1D spectroscopic data allowed us to determine that I to III correspond to flavone-type compounds, O-substituted at 3, 5, 6, 7, 3', and 4' positions, with one β-D-glucopyranosyl (mainly identified by 13C-NMR chemical shift), twomethoxyl,  and three hydroxyl groups as substituents. HMBC experiments confirmed us that methoxyl groups were placed at 6 and 7 positions for all three compounds, remain therefore to insert t he β-D-glucopyranosyl group between 3, 5, 3' and 4' positions, which was made using
shift reagent for UV spectra.

During UV spectra analysis of the compounds (see table 2) were observed: For compound I, the bathochromic shift for band I (+ 42 nm) showing a low intensity decrease with in time (hypochromic effect) observed when UV spectrum was recorded in methanol + sodium methoxyde can let us to place hydroxyl group on positions 3 and 4'. When UV spectrum was recorded in methanol + AlCl3, a + 53 nm bathochromic shift was observed; that shift remain unchanged after hydrochloric acid addition, which place hydroxyl group on positions 3 and 5. In consequence, the β-D-glucopyranosyl moiety should be located on 3' carbon, and compound I should be quercetagetin-6,7-Odimethylether-3'-β-D-glucopyranoside.

Similar to I, compound II showed for band I, abathochromic shift (+ 54 nm) in presence of AlCl3 and AlCl3 + HCl, which place hydroxyl groups on positions 3 and 5 too. The bathochromic displacement (+ 42 nm) of band I observed after sodium methoxyde addition without in time intensity decrease, together with the existence of C3 hydroxyl group previously established, place in this case, the β-D-glucopyranosyl moiety on C4', and compound II
should be quercetagetin-6,7-O-dimethylether-4'-β-Dglucopyranoside.

Different to previously described compounds, band I of UV spectrum in methanol + AlCl3 of compound III was affected after HCl addition, underwent a hypsochromic shift of -37 nm (respect to methanol + AlCl3) which indicated the existence of an orto-dihydroxyl moiety on Bring
(3' and 4' positions), which was corroborated by band I hypsochromic displacement (-32 nm) observed on methanol + sodium acetate UV spectrum after boric acid addition. The stability in time of the methanol + sodium methoxyde, together with the 12 nm bathochromic shift remanent respect to methanol UV spectrum observed on band I of methanol + AlCl3 + HCl, place the third hydroxyl group on C5 carbon, and therefore compound III should
be quercetagetin-6,7-O-dimethylether-3-β-D-glucopyranoside. Although this compound has been reported from Brickellia dentata15, none spectroscopic data has been published in reference 15 and references cited therein.

The UV β-D-glucopyranosyl moieties locations for I-III were confirmed by HMBC interactions observed between the hydrogen on anomeric carbon from each saccharide moiety and it flavonoid moiety carbon (3’, 4’, and 3, for I, II, and III respectively)










Table 1: NMR data for compounds I – III.
_______________________________________________________________________________________
                                    I                                                II                                                    III_______________                              
           δC                 δH, m (J Hz)             δC               δH, m (J Hz)                  δC                  δH, m (J Hz)
2                 156.9                                            156.8                                                 156.6
3                 133.5                                            133.5                                                 133.3
4                 177.8                                            177.9                                                 177.7
5                 151.9                                            151.9                                                 151.7
6                 131.9                                            131.8                                                 131.6
7                 158.8                                            158.8                                                 158.3
8                   91.4                 6.85, s                   91.3               6.82, s                         91.2                  6.83, s
9                 151.9                                             151.8                                                151.6
10               105.5                                             105.5                                                105.3
1'                 121.3                                            121.3                                                121.1
2'                116.5                 7.62, d (2.0)       116.5              7.60, d (2.0)               116.3              7.61, d (2.0)
3'                144.9                                             150.0                                                144.8
4'                148.7                                             148.8                                                148.5
5'               115.4               6.84, d (8.0)           115.4              6.83, d (8.0)              115.1            6.84, d (8.0)
6'               121.8        7.61, dd (8.0, 2.0)        121.8           7.57, dd (8.0, 2.0)        121.6       7.58, dd (8.0, 2.0)
1''              100.9        5.46, d (7.3)                  100.9          5.44, d (7.3)                  100.7          5.48, d (7.3)
2''                76.6      3.23, dd (8.0, 7.3)            76.6        3.24, dd (8.0, 7.3)            76.5       3.19, dd (8.0, 7.3)
3''                70.1      3.26, dd (8.0, 8.0)            70.0       3.25, dd (8.0, 8.0)            69.9       3.27, dd (8.0, 8.0)
4''               74.3        3.08, dd (8.0, 8.0)           74.2        3.08, dd (8.0, 8.0)           74.1       3.08, dd (8.0, 8.0)
5''               77.6     3.08, ddd (8.0, 5.5, 1.5)    77.6    3.07, ddd (8.0, 5.5, 1.5)      77.5     3.07, ddd (8.0, 5.5, 1.5)
6''a             61.1       3.37, dd (11.5, 1.5)          61.1       3.34, dd (11.5, 1.5)          61.8        3.55, dd (11.5, 1.5)
6''b             61.1       3.30, dd (11.5, 5.5)          61.1       3.31, dd (11.5, 5.5)          61.8         3.29, dd (11.5, 5.5)
6-OMe      60.3                  3.71, s                   60.3               3.73, s                        60.3                     3.71, s
7-OMe       56.6                 3.90, s                   56.6                 3.97, s                      56.5                     3.90, s
5-OH                             12.58, s                                  12.55, s                                            12.60, s
Table 2: UV data for compounds I – III.

                                   ___________________________UV λmax (nm)_______________________________
                                   ___________I_______________________ II ____________________III___________
                                           Band I            Band II             Band I            Band II            Band I             Band II
MeOH                                 352                 256                    352                 259                  353                    258
MeOH+NaOMe                  394↓      272↓         405                270                  393                   270
MeOH+NaOAc                  404                 258                      376                266                  407                   256
NaOAc+H3BO3                404                  258                     376                266                  375                   258
MeOH+AlCl3                    405                 271                      406                276                  402                   273
MeOH+AlCl3+HCl           408                 272                      406                274                  365                   266
↓ Intensities decrease in time.

Due to the frequently ingestion of U. sinuata leaves infusion by Andean peoples and, by other hand, by the possibility of use of the three flavonoids in
pharmacological essays, the cytotoxicity of these compounds was tested. Compounds I to III showed similar values for DL50≈ 1000 ppm, which point out the low cytotoxicity showed for the three compounds to Artemia salina16.
Hexadecyl 4-monoitaconate isolated from dichloromethane extract probably arises from fungus of the Aspergillus genus which colonized the plant material
during the storage.
Conclusions
From Urena sinuata leaves, three quercetagetin glucosides were isolated and identified; two of them are new natural products. The presence of I-III in U. sinuata leaves difference chemically to this plant from U. lobata, from the which only flavonoid aglycones were isolated; this sentence support the location of these taxa in different species.

References
1. S Lin, T Pan, C Horg. Chemical constituents of Urena lobata
L. var. tomentosa (Blume) Walp (Malvaceae). Hua Hsueh,
41, 72-73 (1983).
2. K Srinivasan, S Subramanian. Isolation of mangiferin from
Urena lobata. Arogya, 7, 140-141 (1981).
3. I Matlawska. Investigation of flavonoid compounds of select
species from Malvaceae family. Herba Polonica, 36, 65-69
(1990).
4. I Matlawska, M Sikorska. Flavonoid compounds in the
flowers of Urena lobata L (Malvaceae). Acta Pol. Pharm.,
56, 69-71 (1999).
5. D Bhatt, G Rawat. Chemical analysis of medicinal plants
Urena lobata L and Abutilon indicum L. Orient. J. Chem.,
17, 341-342 (2001).
6. M Kittur, C Mahajanshetti, G Lakshminaroyana. Characteristics
and composition Trichosanthes bracteata, Urena
sinuata and Capparis divaricata seeds and oils. J. Oil
Techn., 25, 34-41 (1993).
7. Banco de Datos TRAMIL. Investigaciones pendientes.
http://funredes.org/endacaribe/investigPendientespag11.html.
Visited on February, 9th, 2010. 8:55 h.
8. J Satalaya, J Rojas, B Ríos, M Grandez, E Rengifo, G Ruiz,
D Gutiérrez, A Giménez, N Flores. Antiparasitic activity of
medicinal plants from Peruvian Amazon. BIOFARBO, 17,
23-31 (2009).
9. J Nguyen-Pouplin, H Tran, H Tran, T Phan, C Dolecek, J
Farrar, T Tran, P Caron, B Bodo, P Grellier. Antimalarial
and cytotoxic activities of ethnopharmacologically selected
medicinal plants from South Vietnam. J. Ethno-pharmacol.,
109, 417-427(2007).
10.U Mazumder, M Gupta, L Manikandan, S Bhattacharya.
Antibacterial activity of Urena lobata root. Fitoterapia, 72,
927-929 (2001).
11.O Adeloye, A Akinpelu, O Ogundaini, A Obafemi. Studies
on antimicrobial, antioxidant and phytochemical analysis of
Urena lobata Leave extract. J. Phys. Nat. Sc., 1, 1-9 (2007).
12.R Mathappan, V Prasanth, C Jolly. M Somanath.
Comparative study on the antibacterial activity of the
methanolic extract of Urena lobata root and a standard
marketed herbal formulation. J. Pharm. Res., 3, 953-955
(2010).
13.A Yadav, V Tangpu. Antidiarrheal Activity of Lithocarpus
dealbata and Urena lobata. Extracts: Therapeutic
Implications. Pharm. Biol., 45, 223-229 (2007).
14.R Mathappan, V Prasanth, G Parthasarathy. Immunomodulatory
activity of the methanolic extract of Urena
lobata Linn. Internet J. Pharmacol., 7, (2009).
15.A Ulubelen, B Timmermann, T Mabry. Flavonoids from
Brickellia chlorolepis and B. dentata. Phytochemistry, 19,
905-908 (1980).
16.B Meyer, N Ferrigni, J Putnam, L Jacobsen, D Nichols, J
McLaughlin. Brine Shrimp: a convenient general bioassay
for active plant constituents. Planta Medica, 45, 31-34
(1991).

Una profusa gama de ilustraciones se puede encontrar en: https://picasaweb.google.com/118369454231235428280/CadilloPataDePerro

Pido disculpas por la mala traducción que he podido hacer y por los errores ortográficos que haya cometido al realizar la traducción, si alguno puede asistirme en este sentido le estaré muy agradecido.  William Piña

Publicaciones Importantes

Cadillo Pata de Perro.

Hoja tipica de Cadillo Pata de Perro Insecto posado en una hoja sorbiendo liquidos de la planta Parte inferior de una hoja mos...